Imaging Fundamentals

David Raunig, Ph.D.

Associate Director Translational Technology Statistics Pfizer Global Research and Development

> Imaging Biomarker Team Members Santos Carvajal-Gonzales, Ph.D. Patricia English, Ph.D. Trevor Smart, Ph.D. Robert Buck, Ph.D.

So, What is the Interest?

- In 1993, an NIH Study Group chose Medical Imaging as the most important emergent medical technology
 - For the next generation
 - To peak in 15-20 years
 - We are at 15 years and they were right.
- Clinical Trials Registry has 2,239 active clinical trials that include an imaging endpoint
- JSM 2007
 - 23 presentations/papers that dealt with imaging
 - 2 of these covered clinical trials issues

Why Imaging Biomarkers

Imaging Biomarkers are one more step closer to the expressed phenotype of the disease and to the direct causal pathway

- True volume measurements
- Organ-to-cellular-to-molecular function
- Real- or Near Real-time dynamic imaging
- Translational pre-clinical longitudinal measurements
- Sources of error not well-understood
- Missing Data is the rule and a problem
- Lexicon is very different and confusing

Tutorial Objectives

Upon completion of this tutorial, the statistician will become familiar with imaging fundamentals at a level of understanding that enhances the statistician's role in the design and analysis of clinical trials that involve medical imaging.

Quantitative Imaging

"Quantitative imaging is the development, standardization, and optimization of anatomical, functional, and molecular imaging acquisition protocols, data analyses, display methods, and reporting structures in order to permit the validation of accurately and precisely obtained image-derived metrics with physiologically relevant parameters, and the use of such metrics in clinical research and patient care."

- (RSNA TQI Draft Definition 2008)

Examples of Medical Images

What Exactly is an Image?

Detected Energy

- Spatial Location \rightarrow Region of Interest (ROI)
- Types of Energy
 - electromagnetic (MRI, X-ray/CT and optical)
 - the momentum of a subatomic particle (PET),
 - the energy released from radioactive decay (SPECT) or
 - acoustic (ultrasound).
- Quantitative Measurements
 - Size of ROI
 - Intensity of ROI
 - Change in intensity in ROI

A Basic Imaging System

Pixel – PI(x)cture ELement

Intensity Q total pixel energy within the imaged volume
Voxel – VO(x)lume Element

Intensity Q total energy within imaged volume

Medical Image Matrix of Pixels

From Voltage to Images

MRI

- Computed reconstruction
- Slices of the imaged tissue are constructed

PET / SPECT

- Computed reconstruction using EM algorithm or Filtered Backprojection
- X-ray/CT
 - Plate exposure for single image X-ray
 - Computed reconstruction for CT
- Ultrasound :
 - Time gated and direction of arrival from reflected acoustic pulses

From 2-D to 3-D Images Stacking Pixel Matrices

- All modalities have 3-D Capability
- Stacked Slices of Images
 - Connections by interpolation algorithms
- Slices
 - Acquired as slices of the image
 - Result of back projection reconstruction
 - MRI, PET, CT and Ultrasound
- Slice Properties
 - Thickness
 - Thin slices for resolution
 - Separation
 - Small separation for precise volumes

Slice Mosaic and Selected Slice Stacked View

Viewing Planes

Viewing Platforms

- Two Primary types
 - Cathode Ray Tube (CRT)
 - Liquid Crystal Display (LCD)
- Properties Required for Medical Grade Viewing
 - Brightness and Contrast generally preferred
 - Ambient light features
 - Flicker-free
 - Wide Viewing Angle
- Laptops are generally not acceptable and not used by imaging CROs

Imaging Modality Basics

Types of Medical Imaging Modalities

- X-Ray / Computed Tomography (CT)
- Ultrasound
- Magnetic Resonance Imaging
- Positron Emission Tomography
- Others
 - SPECT
 - Optical
 - Near infra-red

X-Ray

Concept:

- High Energy X-rays are transmitted through entire tissue and collected on the other side
- Different energies for different features
- Limitations
 - Soft-tissue is relatively transparent
 - Occluded features (Shadow effect)
 - Radiation Exposure
- Resolution
 - 50 µm

X-Ray Principles Attenuation for Tissue

Data derived from Macovski 1994

X-Ray Clinical Endpoints

- Oncology
 - Detection
 - Tumor Size Assessment RECIST
- Osteoarthritis
 - Spine, peripheral joints
 - Osteophytes and joint erosion
- Bone healing
 - Fractures: Detection and measurement
 - Dual Energy X-ray Absorptiometry (DXA)
 - Osteoporosis
 - Gender and Age specific
- Angiography
 - Use opaque contrast

X-ray Computed Tomography (CT)

- Concept:
 - Revolving X-Ray
 - 3-D Reconstructed image with no shadows or occluded features
- Advantages
 - High signal / Low Noise
 - No occluded features
- Limitations
 - Soft-tissue characterization is limited
 - Radiation Exposure can be high
- Resolution
 - 10 μm

CT Principles

- X-Ray acquistions from many angles
- Line integrals are the basis behind a single X-ray
- Radon Transform
- Images formed by backprojection to resolve separate voxels

Clinical Trials Endpoints Computed Tomography

- Bone Health (Quantitative CT QCT)
 - Bone Mineral Content, Volume and Density
- Osteoarthritis
 - Joint Space Width
 - Cartilage volume
- Cancer Detection and Measurement
 - 3-D RECIST/WHO
 - Tumor Volume, Cavitation
 - PET Registration
- Lung and Airway Disease
 - Obstructions, Emphysema, Lesions
- Cardiac imaging
 - Motion correction
 - Fast Cardiac gating
- Abdominal and Pelvic
- Extremities

Ultrasound

- Concept:
 - High Frequency acoustic reflection
 - Typically hand operated
- Advantages
 - Real-time images
 - Non-ionizing and Safe
- Limitations
 - Dense materials create shadows
 - Very noisy images Limited penetration
 - Limited resolution
 - <u>Sensitive to Operator Expertise</u>
- Resolution
 - 80 µm

Ultrasound Principles

- Pulses of high frequency acoustic energy reflect at tissue boundaries
 - 150k 40 MHz
 - Higher Frequency \rightarrow Higher resolution
 - Higher frequency \rightarrow Lower penetration
 - Reflections interfere with each other \rightarrow Speckle
 - Compounding reduces speckle
- Location
 - Time of Arrival provides depth
 - Direction of Arrival provides x-y location
- Movement
 - Changes in Frequency provide velocity

Ultrasound Example Cine

Ultrasound Example Doppler

Color Doppler - Echo Cardiography Power Doppler Tumor Angiogenesis

Clinical Trials Endpoints Ultrasound

- Cardiac and Vascular Health
 - Arterial Wall measurements
 - Carotid (Intima Media Thickness cIMT)
 - Coronary plaque (IMT, volume)
 - Intravascular Ultrasound (IVUS)
 - Arterial and Venous Elasticity (Modulus of Elasticity)
 - Thrombosis and Stenosis Doppler Ultrasound
 - Ejection Fraction (EF), Valve insufficiency
- Oncology
 - Detection, tissue characterization, size, blood flow
- Brain
 - Blood flow for stroke

Magnetic Resonance Imaging (MRI)

- Concept:
 - Atomic resonance to an excitation magnetic field
- Advantages
 - Tissue Differentiation
 - Functional imaging
 - Nonionizing
- Limitations
 - Patient limitations
 - Long Acquisition time
- Resolution
 - Depends on the mode, magnet and scanner and tissue
- Down to 90 nm

Bulk Magnetization

What is Meant by T1 and T2 Relaxation

T1-Relaxation – Rate at which magnetization recovers

T2-Relaxation – Rate at which magnetization decays

T1 and T2 Tissue Differences and Signal Intensity

$$M_{xy} = M_0 (1 - e^{-TR/T_1}) e^{-TE/T_2}$$

11/24/2008

31

Functional MR Imaging

Contrast Agents

- Increase signal
- Gadolinium is the primary contrast agent
- Dynamic Contrast Enhanced (DCE)
 - Principle: Transfer of contrast through capillaries to interstitial space
 - Purpose: Vascular permeability
- Functional MRI (fMRI)
 - Principle: Detect regions of biological activity
 - Purpose: BOLD and ASL Detect regions of brain activation through increased oxygen uptake and response
 - Caution: The lexicon for fMRI is derived from statistical lexicon but often does not have the same meaning!

Pfizer

Clinical Trials Endpoints MRI

- Oncology
 - Vascular Permeability (DCE-MRI)
 - Ktrans and IAUC90
 - Tissue Differentiation
- Brain
 - Region Activation (BOLD/ASL fMRI)
 - Volume (structural MRI, Freesurfer, BBI)
- Osteoarthritis
 - Joint Space Width (JSW)
 - Cartilage Volume
- Cardiovascular
 - Plaque volume, CIMT

Positron Emission Tomography (PET) Imaging

- Concept:
 - Radioactive decay of neutron released
 - − positron \rightarrow electron \rightarrow annihilation
 - 2 photons in opposite directions
- Advantages
 - Radioisotope labeling
 - Cellular / Molecular function
- Limitations
 - Low Resolution
 - Registration to anatomic feature
 - Radioactive exposure
- Resolution
 - Very poor
 - Good when combined with CT

Common Radioisotopes

Radionuclide	T _{1/2}
Fluorine-18	110 min
Nitrogen-13	10 min
Carbon-11	20 min
Oxygen-15	2 min

Example: Whole Body PET

from http://en.wikipedia.org/wiki/PET_scanner

Clinical Trials Endpoints PET Imaging

- Receptor Occupancy (RO)
 - Radiolabel a ligand with known affinity
 - Administer test compound
 - Measure displacement
- Metabolism (FDG)
 - Voxelized measure uptake (SUV) of 18F-2-fluoro-2-deoxy-D-glucose
 - Dynamic or Single point modeling
- Cellular Proliferation (FLT)
 - Voxelized measure uptake (SUV) of 18F-3'-fluoro-3'-deoxy-L-thymidine

Image Quality Why It Matters in Clinical Trials

- Impact of Image Quality
 - Desired image signal
 - Background noise and discrimination ability
 - Image integrity Distortion
- Image Quality Assessment
 - Peak Signal to Noise Ratio (PSNR)
 - Just Noticeable Difference (JND)
 - Contrast to Noise Ratio (CNR)
 - Reviewer comments are most useful

Random Factors that Affect Image Quality

- Patient Movement
 - All modalities
 - MRI is most susceptible and can render the image unusable
 - Bulk movement of the entire patient
 - Breathing or cardiac movement
- Background noise
 - Most prominent with low intensity signals
 - Filters and processing helps

Controllable Factors that Affect Image Quality

- Aliasing
 - Incorrect sampling of the data
 - Much like interactions and incomplete factorial designs
- Operator Error / Noise
 - Also include protocol violations
 - Ultrasound operator (Ultrasonographer)
- Imaging Modality Problems
 - Incorrect calibration
 - Machine settings
 - Resolution

Example of Image Quality Problems

MRI Motion Artifacts

Image Analysis

Image Analysis Characteristics

Image Enhancement

- Edge Detection and Object Segmentation
 - Deterministic
 - Statistical
 - Multispectral (otherwise known as multivariate)
 - Random Fields
- Registration
- Compression
- Measurement

Image Enhancement

Noise Filtering

- Filters out white and non-white noise
- Whole image
- Neighborhood (Adaptive Weiner) noise filter
- Intensity Histogram Equalization
 - Critical for X-ray images
 - MLE, MMSE or Adaptive transform to a desired intensity histogram
 - Changes contrast and brightness

Image Filtering

- Averages out noise
 - Gaussian Kernel (also known as a mask)
 - Finite Impulse Response (FIR)
 - Weiner
- Delete isolated bad pixels
 - Median Filter
 - Tophat / Bottomhat
- Eliminate outlier pixels
 - Denoising using Wavelets
- Deblurring
 - Inverse Filter
 - Removes some motion blurring
- Isolate certain features
 - Matched Filter for patterns
 - Texture
 - Directional

Some Filtered Images

Entropy Filter to detect changes in texture Smoothed (Blurred) previous lesion

Filtered out vertical edges from previous lesion

Edges and Partial Volume Effects

Edge Detection Example Human Xenograft Melanoma

Original Image

Sobel Edge Detection

Canny Edge Detection

Example Histogram Equalization Carotid Artery

Registration Example: Brain Registration to an Atlas

Image Compression

- A means of reducing the size of an image for transmission or storage
- Lossy Compression
 - Deletes changes in intensity based on a measure of importance
 - Most Compression
 - Can result in artifacts
 - JPEG/JPEG2000, TIFF, GIF, Wavelet, DCT, ...
- Lossless
 - No loss of information

Compression ringing at a sharp edge

Summary

Modality	Concept	Advantage	Limitation	Clinical Applications
X-ray	Attenuation	Simple, Fast, Inexpensive, High resolution	Soft Tissue, Shadowing, Radiation	Oncology Bone Angiography
СТ	Attenuation	High resolution 3-D High contrast	High radiation	Bone, Osteoarthritis, Oncology Lung/Airway, Cardiac Abdominal
MRI	Atomic resonance	High resolution Tissue segmentation, 3- D, Functional Imaging	Patient limitations, long acquisition time	Brain function and structure, Oncology, OA, cardiovascular
PET	Radioactive decay	Radionuclide labeling of ligands, cellular/molecular function	low resolution, radiation exposure, only images where radionuclide is	Receptor occupancy, cellular metabolism, cellular proliferation rate
Ultrasound	Acoustic Reflection	Inexpensive, Safe, versatile, real-time	Image noise Air and Bone Intestine	Oncology Cardiovascular Blood flow

Acknowledgements

- Pfizer Biostatistics
 - Janis Grechko, Ph.D.
 - Patricia English, Ph.D.
 - Santos Carvajal-Gonzales, Ph.D.
 - Trevor Smart, Ph.D.
 - Robert Buck, Ph.D.
 - Yanwei Zhang, Ph.D.
 - Doug Lee, Ph.D.
 - Eve Pickering, Ph.D.

Pfizer Molecular Medicine Imaging Group

- Tim McCarthy, Ph.D.
- Brad Wyman, Ph.D.
- Theresa Tuthill, Ph.D.
- Paul Maguire, Ph.D. (now Novartis)
- University of Connecticut
 - Prof. Martin Fox, Ph.D.
 - Zhi Yang, Ph.D.
 - Chunming Li, Ph.D.